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Areas of planar Brownian curves 

B Duplantier 
Service de Physique Thtorique:, C E N  Saclay, F-91191 Cif-sur-Yvette, Cedex, France 

Received 10 January 1989 

Abstract. We address the problem of the algebraic area enclosed by a Brownian curve in 
two dimensions, recently reconsidered by Khandekar and Wiegel. We recall the principal 
results actually first obtained by Paul Levy in 1950. Another derivation by functional 
integrals is given for several probability distributions: that of the area of a Brownian ring, 
the area between an open Brownian arc and its chord and, finally, the area swept with 
respect to the mean position of the Brownian path, a result which seems to be new. 

1. Introduction 

In a recent paper Khandekar and Wiegel (1988) hereafter referred to as KW) obtained 
the distribution function of the algebraic area of a closed Brownian curve in two 
dimensions. They were elaborating upon a stud by Brereton and Butler (1987) of the 
areas spanned by discrete Gaussian walks in two dimensions. Let us fix the notation 
and take the continuum Brownian probability weight as 

P{r} = exp ( -: Ios ( z)2 ds) 

where r(s)  = (x(s),  y ( s ) )  is the configuration in R2, depending on abscissa O s  s s S, 
S being the ‘length’ of the path. The average end-to-end distance is then, with respect 
to the above weight, 

Then, considering now closed Brownian rings of size S,  the probability to enclose an 
algebraic area in two dimensions (figure 1) 

R2=([r(S)-r(0)12)=2S.  (1.2) 

Figure 1. Algebraic area enclosed by a planar Brownian ring. The hatched exterior loops 
contribute negatively while the hatched interior loop contributes twice its arithmetic area. 
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(1.4) 

where the subscript represents the closure constraint. Its expression is found to be ( K W )  

P(A)  = ( ~ / 2 S ) ( c o s h  7rA/S)-’ (1.5) 

and is properly normalised as 
+X 

P(A)  dA = 1 L 
since jiE (cosh x ) - ~  dx = 1. In Khandekar and Wiegel’s notation we have 2s N12 
and the above probability is P(A, N )  = ( 7r/N12)(cosh 27rA/ N12)-2 (a factor 27r being 
missing in (KW, 24) for a proper normalisation). 

KW obtain (1.5) by a functional integral technique starting from the continuum 
model (1.1) and calculating the generating function (Fourier transform) of (1.5). The 
latter is given by a path integral similar to that of a quantum mechanical particle in 
a magnetic field. 

Brereton and Butler (1987) studied the same problem for discrete Gaussian random 
walks by an expansion in normal-mode coordinates. They did not however obtain 
(1.5) in a closed form, but gave instead a numerical curve for P ( A ) .  They also studied 
the area swept by an open Gaussian walk with respect to a fixed point (figure 2(b ) ) ,  
as well as the average end-to-end distance with a fixed area. 

Figure 2. Areas enclosed by an open Brownian path ( a )  between the arc and the chord, 
and ( b )  between the arc and the end-to-end triangle. In ( b )  the area counted includes the 
shaded and triangle areas. 

The purposes of this paper are several. First of all, we want to comment that studies 
about the area described by a planar Brownian motion were initiated by Livy as early 
as 1940, who first obtained the distribution (1.5) (Livy 1950, 1951). He made use of 
the expansion by Wiener (1924) for a random Brownian variable in stochastic Fourier 
series (normal modes). He considered also (LCvy 1950) the algebraic area confined 
between a Brownian arc starting at r ( 0 )  = O  and ending at r ( S )  = r, and its chord (figure 
2(a)) .  The characteristic function is then (LCvy 1951) 

U 
iE[exp (igd) I r ( S )  - r (O)  = r ]  = - exp[(l - U  coth u)r2/2S] (1.6) sinh U 

where 

U = gs/2.  (1.7) 
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E above is defined as an expectation value, conditional on the extremity r(S) being at 
distance r from the origin of the path (a similar formula appears in KW). It can be 
written in terms of the generating function for a free open Brownian motion 

z ( g ,  r )  = (exp(ig.d)s2(r(S) - r ( 0 )  - r)) 

E(g, r )  = zk, r)/z(O, r )  

e ( g  = 0, r )  = (~Ts)- ’  exp( - r* /2~)  

(1.8) 

where the average is taken with weight (1.1). One has 

(1.9) 

where 

(1.10) 

is the end-to-end distance probability distribution of a 2~ Brownian motion. Hence 
LCvy’s result equivalently is 

U 
exp(-u coth U r2/2S). 

%(” r ,  = 2 r S  sinh U 
( 1 . 1  1 )  

Taking the zero-distance limit r = 0 of (1.6), one gets the characteristic function for a 
planar closed Brownian ring (Ltvy 1950, 1951) 

E(g, 0) = u/sinh U (1.12) 

which by Fourier transforming 

P ( A )  = J exp(-igA)E(g, 0 )  d g / 2 r  
Bp 

(1.13) 

gives the announced result (1.5). 

and its chord is obtained by integrating over r in R2 (Ltvy 1950) 
The total characteristic function of the area between an arc of the Brownian curve 

Fourier transforming with respect to g yields 

1 
= S cosh( r A / S )  ‘ 

(1.14) 

(1.15) 

Note that Fourier inverting with respect to g the full joint distribution ( 1.6) in g and 
r seems difficult. 

In this paper, we want to give a short review of the methods used in the literature 
to determine these characteristic functions and probabilities, and give also an alternative 
derivation by standard functional integrals, which is simpler than that of KW. We 
should first stress that the mode expansion papers by LCvy (1950,1951) are quite 
elegant. Another simple derivation of the characteristic function (1.6) has been given 
by probabilistic methods (Yor 1980), using more recent techniques for the Brownian 
motion, i.e. the absolute continuity between the laws of an Ornstein-Uhlenbeck process 
and Brownian motion, on the interval [O, SI. Extensions of LCvy’s stochastic area 
formula were also obtained through its relation to Legendre polynomials (Biane and 
Yor 1986, 1987), in Ltvy’s tradition of deriving a wealth of explicit formulae. 
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Let us discuss now the functional integral technique of Khandekar and Wiegel. 
They evaluate quite classically the generating function ( 1.8) by Gaussian integration. 
However, they use a saddle .point trajectory, which is determined by Euler-Lagrange 
equations, about which they calculate the quadratic fluctuations. This method is indeed 
standard for evaluating the Feynman- Kac integrals for harmonic oscillators. But the 
determination in K W  of this saddle point trajectory is ‘remarkably tedious’, as noted 
by the authors themselves, and leads to complicated calculations. In the next section 
we give a direct functional integral calculation of (1.8), which avoids these difficulties. 
The method is generic and could also be useful to mathematicians, for a comparison 
with the probabilistic methods. For completeness, we also derive in 0 3 by the same 
method the generating function and probability distribution of the area swept by a 
Brownian path with respect to its centre ofgravity (i.e. its mean position). 

Before proceeding to the calculation, let us add a last comment about Brereton 
and Butler’s work (1987, hereafter referred to as BB). They obtain for the normalised 
generating function of the area ((3.18) and (4.1) of their work) of a discrete closed 
Gaussian walk of N steps of mean length I :  

(1.16) 

where 

p : = cot( m/ N ). (1.17) 

We have added an exponent f in (1.16) which is apparently missing in their equation 
(3.18). BB d o  not evaluate (1.16) in a closed form but resort on numerical approxima- 
tions. One can actually recover LCvy’s Brownian result (1.12) from (1.16) and (1.17) 
in the long walk, i.e. continuum limit N + CO. For this it is sufficient to use the periodicity 
of cot to get 

(1.18) 

and note that then the dominant terms will come from the neighbourhood of the origin 
in n, where p : =  N / 4 m  Hence 

3c 

(1.19) 

where the product can be completed up to infinity. Using the well known product 
expansion sinh u / u  = IIneN* (1 + u 2 / n * n 2 ) ,  we get asymptotically 

which is nothing other than (1.12) for U = g S / 2  (1.7) and S =  N12/2, as expected. So 
result (3.18) of Brereton and Butler (1987), slightly amended, also leads to Livy’s 
formula, as it must. 

Let us now present an alternative and simple derivation by standard functional 
methods. 
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2. Generating functions and probability distributions 

2.1. Functional integrals 

In order to compute results for all geometrical cases, we introduce the area-generating 
function for Brownian motion with fixed extremities (figure 2 )  r ( 0 )  = r , ,  r ( S )  = r 2 ,  
r = r 2 - r l :  

( 2 . l a )  

where the normalisation factor is the partition function of a free Brownian motion, 
with the origin fixed: 

To= [ d{r} exp ( -; I i2 ds) s ‘ ( r ( 0 ) )  

such that 

% ( g  = 0 ,  r l ,  r2) d2r = 1 .  I 
( 2 . l b )  

( 2 . l c )  

From now on, we include the normalisation factor 2;’ in the dejnition of the functional 
measure. 

The area d ( 1 . 3 )  is essentially a quadratic form of x ( s ) ,  y ( s ) .  It is most convenient 
to rewrite it in terms of the derivative r ( s )  = (dr /ds)(s) ,  by using in (1.3) the trivial 
identity 

X (  S )  = ds’8( s - s’)X( s’) + ~ ( 0 )  ( 2 . 2 )  IoS 
and a similar equation for y ( s ) .  The vector product is also conveniently represented 
by use of the 2 x 2 antisymmetric tensor: 

.=(O -1 0 1) 

such that 

x y ‘ -  yx’  = r .  E - r‘. (2 .3)  

The area ( 1 . 3 )  is therefore 
S S 

d { r } =  -+lo ds lo d s ’ r ( s ) . B ( s , s ’ ) . r ( s ’ ) + t r , . & . r 2  (2,.4) 

where B(s, s ’ )  is the symmetric operator: 

B(S, ~ ’ ) = l [ e ( s - ~ ‘ ) - e e ( s ’ - ~ ) ] ~ .  ( 2 . 5 )  

Notice that the first term of (2 .4)  is the algebraic area enclosed between the arc of the 
curve and its chord, while the second is just the area of the triangle spanned by r l ,  r2 
with respect to the origin (figure 2 ) .  I t  is essential to symmetrise B under the exchange 
of s, s’ and of the space indices in order to get a symmetric Gaussian integral later. 
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The integration variables in (2.1) are changed to r ( s )  by the use of d{r(s)}= 
d2r(0) d{r(s)}, and (2.1) becomes 

%(g, r l ,  r J  = exp(ig$rl - E * r2) dIi(s)} 

xexp( - a  1 ds ds’r(s)  .A(s,  s’) . r ( s ‘ )  ) 6’ ( r  - los i ( s )  ds) (2.6) 

where A is the symmetric operator: 

A(  s, s’) = 6 (  s - s’)l  + igf[ e(s - s‘) - O(s’ - S ) ] E  (2.7) 

and 1 is the unit 2 x 2  matrix. The constraint on the total displacement is Fourier 
transformed and (2.6) becomes 

%(g, r l ,  r2) = exp(t igr, * E - r2)2(g,  r )  (2.8~1) 

exp(-ik r )g(g ,  k )  (2.86) d2k 

$ ( g , k ) = j d { r ( s ) } e x p (  -f{ i . A . i + i /  k . i ( s ) d s ) .  (2.9) 

Everything has been reduced to calculating Gaussian integrals. We recall the discrete 
formula 

valid for vectors X = (xl  . . . , x,) and H of R “  with H e  X = E i  hixi, and A a symmetric 
positive-definite matrix. In the continuum limit this gives the Gaussian functional 
integral (2.9): 

S 

g(g ,  k )  = (det exp ( - f  k2 Jb los A’(s,  s‘) ds ds’) 

or in direct space 
- I  

B(g, r )  = (2.rr los los A‘( s, s’) ds ds’) (det A)-”2 

x exp [ - 5  r2  ( Ios los A‘(s, 3’) ds d ~ ’ ) - ’ ]  

(2.11) 

(2.12) 

In these formulae A’ is the space-symmetric part of the inverse A-’ of the operator 
A, such that 

A-’(s, s’) = A’(s,  s’) l+ B’(s ,  s ’ ) E .  (2.13) 

Let us recall that B(g, r )  is the generating function of the area &chord enclosed between 
the chord and the arc, while %(g, r l ,  r2) is that of the total area spanned between rl 
and r, with respect to a fixed origin 0 (figure 2). Because of the normalisation (2,lc), 
we have explicitly 

Schord(g3 r, = (exp(igach,r,)s2(r(S) - r(0) - r))* (2.14) 
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The generating function of the arc-chord area, without the end-to-end distance 
constraints, is accordingly 

Tchord(g) E (eXP(igdchord)) 

T(g,  r )  d2r  = g ( g ,  k =0)  
= lR2 
= (det A)-’’2. (2.15) 

We have obtained these functions in closed form (2.12) and it now remains to evaluate 
explicitly the determinant det A and the inverse A-’ (2.13) of operator A. 

2.2. Inversion of A 

The operator A having been given in (2.7), and A-’ in (2.13), the equation AA-’ = U  
is explicitly written in the 1, E matricial basis 

A’(s ,s’)-f ig  (id ds”-{ssds”) B’(s”, s ‘ ) = S ( s - s ’ )  

We integrate the kernels on the right variable s‘ and define 

X ( s ) =  [A’(s, s’)+iB’(s, s‘)]ds’ loS 
JOS Y( s)  = 

Equations (2.16) then combine into 

[A’( s, s‘) - iB’( s, s’)] ds’. 

X ( s )  - fg  (1: ds”-  jss ds”) X ( s ” )  = 1 

Y ( s ) + ~ g ( l ~ d s f ~ - l ~ ’ d s ~ ~ )  Y ( s ” ) = l .  

(2.16) 

(2.17) 

(2.18) 

Differentiating both sides with respect to s gives 

d X / d s  = gX d Y/ds = -gY 

which are trivially integrated into 

X ( s )  = A  egr Y(s) = p e-@. (2.19) 

The constants A, p are determined by plugging the forms (2.19) into integral equations 
(2.18): 

A = e-gs/2 (cosh gS/2)-’ = e B s / 2  (cosh gS/2)-’. (2.20) 

We therefore find, owing to (2.17), 
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The double integral, appearing in (2.12), is finally 

Ios los A'(s, s') ds ds '=-tanh(gS/2).  (2.21) 
2 

g 
Notice that one finds similarly 5: 5: B'( s ,  s') ds ds '  = 0, as expected from the antisym- 
metry of B' in (2.13). 

2.3. Determinant of A 

We formally write (2.7) as A = T I  + igB and 

det A = exp Tr In(U+igB) = exp ( - l ) "+ ' ( l /n ) ( ig)"  Tr B" 
n z l  

Owing to the trace properties 

T r & = O  & 2 =  -1 T r 1 = 2  

the above summation is reduced to even integers n = 2n' only and 
X 2 n '  

In det A = - 1 1 (f) Tr[(B+- e - ) 2 n ' ]  
n ' = l  n (2.22) 

where the meaning of the symbolic operator (8- - is clear from (2.5): 
s 2 n '  2 n  

Tr[( e+ - e-) ' " ' ]  = fl ds, fl h ( s ,  -si+]) (2.23a) I 0 1 - 1  i = l  

with s2np+l = sI and 

h ( s )  = e(s)  - e(-s). (2.236) 
The easiest way to compute (2.23) is to diagonalise (2.236) as an integral operator 
with an eigenvalue equation 

los h ( s  - s')g(s') ds '=  hg(s).  

The solutions are trivially 

gm (s) = exp(2s/ A, ) 

exp(2S/A,) = -1 A, = 2 S / i ~ m  m E 22 + 1. 

Hence we have immediately 

Tr[( e+ - = C A$,' 
m ~ 2 Z + 1  

m c 2 Z i l  
(2.24a) 

Notice that one can also use here a Fourier mode decomposition of h ( s )  over the 
interval [ - S ,  SI 

such that 

(2.246) 
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We may remark at this stage that this Fourier mode decomposition is the analogue of 
the mode expansion of the Brownian motion, as used by Levy (1950). However, one 
should note that the convolution integral (2.23) is performed only on the half period 
[0, SI, and in general the Fourier method does not diagonalise it. Here, the fact that 
only odd modes appear in h:, make it useful. The general method is really the 
diagonalisation of the integral kernel h(s  - s’), as we shall see in 0 3 when considering 
the area swept with respect to the centre of gravity. 

Plugging (2.24) into (2.22) and performing back the summation over n ’ E N  gives 

l n d e t A =  me2Z+I  h(l+g) 

From the well known identity 

sinh z Z 2  -- - n * ( 1 + m )  
Z m c N  

one can deduce the product over odd numbers 
2 

(cosh;) = m e 2 Z + l  n (I+&) 

Hence we finally get the very simple result 

det A = cosh2 gS/2. 

(2.25) 

(2.26) 

(2.27) 

2.4. Generating functions 

The basic generating function (2.14) for the area between the Brownian arc and its 
chord, for a fixed span r, (figure 2(a))  has now the explicit form (use (2.21) and (2.27) 
in (2.12)) 

1 
exp[ -gr2/4 tanh(gS/2)]. g 

%, r )  = - 47r sinh(gS/f) 
(2.28) 

From this generating function we deduce those of all other geometric situations. First, 
the case of the area of a closed Brownian curve (figure 1) is obtained by letting r+O 
in (2.28) to get 

i T ( g ) = i T ( g ,  r=0)=(exp(igs8)6~(r(S)-r(O))) 

(2.29) - g - 
417 sinh gS/2’  

Second, when one relaxes the constraint of a fixed distance r between the extremities 
one gets the full arc-chord generating function (2.15) (use (2.27)): 

%hor&) = (cosh gs/2)-’ (2.30) 

which can also be obtained by integrating (2.28) over r. 
Recall that, if the area of the Brownian arc is measured with respect to an external 

reference point 0 (figure 2(b)), the generating function is given by ( 2 . 8 ~ ) .  One can 
then consider a last interesting geometrical case. One fixes the origin of the curve at 
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position rl with respect to 0, and lets the end position move. Then the total generating 
function of the area swept by the random path with respect to 0 (figure 2(b)) is 

%:path(g, r l )  = d2r  exp(igr, E * r)%(g, r)  i 
which by a trivial Gaussian integration gives 

(2.31) 

Equations (2.28), (2.29) and (2.30) correspond, respectively, to LCvy's results (1.1 l ) ,  
(1.12) and (1.14) in the introduction. 

2.5. Probabilities 

Let us calculate the probability distributions of the area of a Brownian ring and of 
the area between the arc and the chord of an open path. We have from (2.29) 

U 
(2.32) - exp(i6u) - 

sinh U 
dg exp(igA) - = - 

with the reduced dimensionless variables 

U = g s / 2  6 = 2A/ S. (2.33) 

Integral (2.32) is easily done by closing the contour in the upper half-plane (for (> 0) 
to get a sum over the residues 

This is 

77 
P ( A )  = 

2 s  cosh2( .nA/S) 

(2.34) 

(2.35) 

as announced in ( l S ) ,  valid for a closed Brownian curve. 
For the area enclosed between a Brownian arc and its chord, we use (2.30) to get 

fZ d g  
-* 2 T  Pchord(A) -exp(igA)schord(g) 

1 
cosh U 

- exp(i6u) - . 

Closing the contour yields the series (for example 6 > 0) 
* 

(2.36a) 

1 
S cosh( ?rA/S) 

- - (2.366) 
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a probability which is symmetric with respect to positive and negative areas and 
normalised to 1. 

It is worth remarking that Fourier inverting the generating functions with a con- 
straint on the end-to-end distance r of the Brownian motion is not trivial. Examples 
are the arc-chord area generating function %(g, r )  (1.6) and ( 2 . 2 8 ) ,  or the generating 
function Tpath(g, r )  for the total arc-angle area (figure 2 ( b ) ) .  For instance for the 
arc-chord area, (1.6) leads to an integral 

U 
exp[(l - U coth u ) r 2 / 2 S ]  (2 .37)  

sinh U 

to which the residue theorem can no longer be applied, in contrast to integral (2 .32)  
for r = O .  

3. Area swept with respect to the centre of gravity 

In this section we consider the area dG enclosed between the arc of an open planar 
Brownian motion and the angle joining its centre of mass G to its two extremities 
(figure 3 ) .  We can fix the centre of gravity at the origin of coordinates 

los r( s)  ds  = 0 

and define a constrained generating function 

(3 .1 )  

Since G is at the origin the area dG can be written in the same way as in ( 2 . 4 )  and 
(2 .5)  and the explicit functional integral form of TG is quite similar to (2.6): 

&(g) = d{r} exp (-f 1 i s  A * i ds ds’ exp(ig i r ( 0 )  - E - r ( S ) ) s 2  

( 3 . 3 )  

where A is the symmetric operator ( 2 . 7 ) .  In the functional integral ( 3 . 3 )  we integrate 
freely over the extremities r(O), r ( S )  of the path, and have simply to take into account 

Figure 3. Area d, spanned by the Brownian arc with respect to the centre of gravity. 
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the condition (3.1). As in § 2 we shift to the functional variable i ( s )  and use 

d{r} = d2r(0) d{i} 

r(S)  = r ( O ) +  r ( s )  ds 

los r(s)  d s / S =  r(O)+ ( S - s ‘ ) r ( s ’ )  ds’/S. 

loS 
Jos 

The distribution in (3.3) is represented by a Fourier integral and one gets 

S 
d’k 

TG( g ) = I d{ r }  exp ( - f 1 r * A * i. d s  ds  ’) - exp ( ik  los ( S - s’) r- 
(27d2 

d2r(0) exp[ir(O) - ( k + g T E * / o s  1 i d s ) ] .  

1 . 2  

The integrals over r(0) and k are trivial to perform and one is left with a simple 
functional integral over i 

) %G(g) = 5 d{i} exp (-: 1 r .  A r ds ds’ 

This integral is purely quadratic in r and we write it as 

(3.4) 

(3.5) 

with the symmetric Gaussian operator (see (2.7)) 

AG( s, s’) = S( s - s ’ ) l +  igf [ e( s - s’) - 6(s’  - s) - ( s  - s’)/ S ) ] E .  (3.6) 
AG is quite similar to operator (2.7), augmented by a new s - s’ term due to the centre 
of gravity constraint. The functional integral (3.5) is then formally (up to a proportion- 
ality constant) (see (2.10)) 

TG(g) = (det A G ) - ” ~ .  (3.7) 
We use the same method for calculating det A, as in § 2.3. We define a function over 
interval [-S, SI: 

(3.8) f( s ) = e ( 3 )  - e ( - s ) - s/ S. 

We have to compute (see (3.6)) 

In det AG = Tr In( 6 (s - s’) 1 + ig&f( s - s’) ) 
cs (-l)n+’ 

= T(:)~ Tr E ”  Trf” 
n = l  

where 

(3.9) 

T r ~ ~ ~ o s f ( s l - s 2 ) f ( s 2 - s ~ )  . . . f ( s n - s I ) d s l ,  . .ds , .  (3.10) 

A useful identity is 

Tr E “  =2Sn,2Z(-l)n’2. (3.11) 
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For computing the trace (3.10) we cannot use the Fourier mode decomposition of f (s )  
over [ - S ,  SI since the trace (3.10) is integrated over the half-period [0, SI only. Hence, 
we have to diagonalise the integral operator associated with and search for the 
eigenvalues A and eigenfunctions g such that 

{os/(s-s’)g(sf)  ds’= Ag(s’) ( 3 . 1 2 ~ )  

where 

f(s - s‘) = 6(s - s’) - 6(s‘- s) - (s - s ’ ) / S  (3.12 b )  

is antisymmetric. The explicit equation is 

Jos g(s’) ds’- Iss g(s’) ds’+ as + b = Ag(s) 

with 

(3.13) 

(3.14) 

Differentiating (3.13) with respect to s yields 

2g(  s) + a = Ag‘( s’) 

hence 

where p is a 
the condition 

i.e. 

g(s)= - i a + p  exp[(2/A)s] (3.15) 

free parameter fixing the L2-norm of g. Since we differentiated (3.13), 
that (3.13) holds at one point at least (e.g. s = 0) has to be implemented 

-los g(s’) ds ‘+b  = Ag(0) 

b + a S = A ( p - ; a ) .  (3.16) 

It is not difficult then to use solution (3.15) in (3.14), and finally substitute a and b 
in (3.16) to find the simple eigenvalue equation 

tanh(S/A) = -f(S/A) (3.17) 

whose solutions are pure imaginary, as expected from the antisymmetry of (3.12b). 
We set for the eigenvalues A, 

S/A, = ix, (3.18) 

tan x, = -$x, 
(3.19) 

x-, = -x, 

where we have to discard the trivial zero xo=O. In terms of the eigenvalues A,,, we 
now have for the convolution trace (3.10) 

x, E ] - f ~ +  m,i-, ;,i-+ mT[  mEE* 

(3.20) 
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Inserting this and (3.11) into (3.9) gives immediately 
2n'  1 gh 

l n d e t A , = -  c c ;(--f) 
m E H *  n ' = l  n 

= m a H  ln [ 1 + ( E ) ' ] .  

Hence the generating function (3.7) is given by the infinite product representation 

2EG = (det AG)-I" = JJ [ l+(gs)'l1. 
m z l  2xm 

One can calculate this infinite product as 

X 2  sinh x 
m a l  n (1 +z) = (cosh x + 3 -) X E 4(x) 

(3.21) 

(3.22) 

where the xm are the solutions of (3.19). This identity can be obtained from the contour 
integral in the complex plane 

(3.23) 

where y1 and y 2  are two contours in the upper and lower half-plane, y1 encircling the 
poles ix,, m 3 1 and y 2  the others -ixm = ix-m, m 2 1, zeros of 4 ( z ) ,  4 ( i x m )  = O  (figure 
4). A trivial use of the residue theorem gives on the one hand 

(3.24) 

On the other hand, one can deform the contour y ,  U y2 in order to enclose only the 
cut z E R, z E [ -x, x] of In[ 1 - (x2/z2)] (figure 4). A standard integration along this cut 
then gives I (3.23): 

I = 1n[4(x)4(-x)/4 '(0)1.  
From this follows the result (3.22); QED. 

(3.25) 

id ibl 

Figure 4. ( a )  The integral contour y, U y2 for evaluating (3.23).  ( b )  The deformed contour 
along the cut [-x, x ]  of In[l - (x ' /z2)] .  
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Finally we find for the dP,-generating function (3.21) 

4 
U = gs /2  

&(g) = cosh U + 3sinh U /  U 
(3.26) 

which is a combination of the generating functions (2.29) u/sinh U for the area of a 
closed path, and (2.30) l/cosh U for the arc-chord area. This characteristic function 
(3.26) can be also derived (Yor 1989) from the results of Biane and Yor (1986). The 
probability distribution associated with the area dG is now explicitly 

(3.27) 

with 6 = 2A/S. By integration in the complex plane, one picks up the poles (3.19), 
zeros of +(U) (3.22), and gets the series 

(3.28) 

where the sum runs only over the positive roots x, of (3.19). Asymptotically, the large 
deviations from the mean (a,) = 0 are driven by the first pole 

In conclusion, let us recall the principal probability distributions derived here: area 
enclosed by a Brownian ring (2.35); area enclosed between the Brownian arc and its 
chord (2.36); and finally area spanned between the Brownian arc and the wedge angle 
joining the centre of gravity to the extremities of the arc ((3.26) and (3.28)). The 
functional integral technique used to obtain (2.12) in § 2.1 was straightforward. The 
actual computation in 00 2.2 and 2.3 of the inverse Gaussian operator and of the 
determinant by perturbation about the identity is of generic applicability (also in other 
functional integral problems). Any quadratic form associated with the Brownian 
motion could be studied in the same way. 

Let us also mention that generating functions entirely similar to a ( g ,  r )  (equation 
(1.1 1)) appear in the different problem of the winding angle distribution of a Brownian 
motion for some deep reasons related to the Ray-Knight theorem (1963) (see the 
discussion in Pitman and Yor (1986)). Finally, the area problem for a closed Brownian 
curve addressed here is also relevant to the statistical mechanics of two-dimensional 
(Brownian) vesicles (Leibler e? a1 1987). However, the introduction of an internal 
pressure p coupled to the area by exp(-pa), leads to a partition function 

and the poles correspond to the unstability generated by the possibility of both signs 
for the algebraic area. 

Let us conclude with a (non-exhaustive) list of related mathematical works and 
generalisations of LCvy's stochastic area, which could be useful to the community of 
physicists: earlier calculation of (exp(-A jz x2(s) ds))  by Cameron and Martin (1945); 
heat equation by Gaveau (1977); iterated logarithm laws by Berthuet (1979, 1981) and 
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Helmes (1986); probabilistic proof of the index theorem (Bismut 1984, 1988); relations 
to Bessel processes (Pitman and Yor 1982a, 1982b, Biane and Yor 1986, 1987). Also 
noticeable are various generalisations to n-dimensional Brownian motions of the planar 
area process considered here, by Helmes and Schwane (1983) and Berthuet (1986). 
KrCe (1986) derived and generalised to arbitrary dimensions the characteristic function 
of LCvy's stochastic area in terms of functional determinants, which bear some 
resemblance to ours. Recently, MacAonghusa and Puli (1988) obtained an extension 
of LCvy's formula in which the two-dimensional Brownian motion is also conditioned 
by the value of the integral of its components with respect to some measures on [0, SI. 

The results (3.26) and (3.28) concerning the probability distribution of the area 
swept by a planar Brownian motion with respect to its mean position (i.e. centre of 
gravity) could also find an application in Malliavin's calculus (Yor 1988). 
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